gnn.go 2.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. package main
  2. import (
  3. "math"
  4. )
  5. const (
  6. HIDDEN int = 200
  7. )
  8. type (
  9. Parameter struct {
  10. Wo, Wi, B Matrix
  11. }
  12. Layer struct {
  13. d int
  14. f func(Matrix) Matrix
  15. p Parameter
  16. O, I, E Matrix
  17. }
  18. )
  19. func ReLU(A Matrix) Matrix {
  20. for i := 0; i < A.N(); i++ {
  21. for j := 0; j < A.M(); j++ {
  22. A[i][j] = math.Max(0, A[i][j])
  23. }
  24. }
  25. return A
  26. }
  27. func Softmax(A Matrix) Matrix {
  28. for i := 0; i < A.N(); i++ {
  29. max, sum := 0., 0.
  30. for j := 0; j < A.M(); j++ {
  31. max = math.Max(max, A[i][j])
  32. }
  33. for j := 0; j < A.M(); j++ {
  34. A[i][j] = math.Exp(A[i][j] - max)
  35. sum += A[i][j]
  36. }
  37. for j := 0; j < A.M(); j++ {
  38. A[i][j] /= sum
  39. }
  40. }
  41. return A
  42. }
  43. func GetEmbedding(G Graph, u, k int, l []Layer) Vector {
  44. if k == 0 {
  45. return G.X[u]
  46. }
  47. l[k].E = Multiply(Matrix{GetEmbedding(G, u, k-1, l)}, l[k].p.B)
  48. l[k-1].O, l[k-1].I = MakeMatrix(1, l[k-1].d), MakeMatrix(1, l[k-1].d)
  49. Do, Di := 0, 0
  50. for v, w := range G.A[u] {
  51. if w == 1 {
  52. l[k-1].O.Add(Matrix{GetEmbedding(G, v, k-1, l)})
  53. Do++
  54. } else {
  55. l[k-1].I.Add(Matrix{GetEmbedding(G, v, k-1, l)})
  56. Di++
  57. }
  58. }
  59. if Do > 0 {
  60. l[k-1].O.Divide(float64(Do))
  61. l[k].E.Add(Multiply(l[k-1].O, l[k].p.Wo))
  62. }
  63. if Di > 0 {
  64. l[k-1].I.Divide(float64(Di))
  65. l[k].E.Add(Multiply(l[k-1].I, l[k].p.Wi))
  66. }
  67. return l[k].f(l[k].E)[0]
  68. }
  69. func Train(G Graph) []Layer {
  70. p1 := Parameter{MakeRandomMatrix(1433, HIDDEN), MakeRandomMatrix(1433, HIDDEN), MakeRandomMatrix(1433, HIDDEN)}
  71. p2 := Parameter{MakeRandomMatrix(HIDDEN, 7), MakeRandomMatrix(HIDDEN, 7), MakeRandomMatrix(HIDDEN, 7)}
  72. l := []Layer{{d: 1433}, {d: HIDDEN, f: ReLU, p: p1}, {d: 7, f: Softmax, p: p2}}
  73. for u, X := range G.X {
  74. GetEmbedding(G, u, 2, l)
  75. delta := MakeMatrix(1, 7)
  76. delta[0][nodeLabel[u]] = 1
  77. delta.Sub(l[2].E)
  78. DWo2, DWi2, DB2 := Multiply(l[1].O.Transpose(), delta), Multiply(l[1].I.Transpose(), delta), Multiply(l[1].E.Transpose(), delta)
  79. DWo2.Divide(10)
  80. DWi2.Divide(10)
  81. DB2.Divide(10)
  82. delta = Multiply(delta, l[2].p.B.Transpose())
  83. for i := 0; i < HIDDEN; i++ {
  84. if l[1].E[0][i] == 0 {
  85. delta[0][i] = 0
  86. }
  87. }
  88. DWo1, DWi1, DB1 := Multiply(l[0].O.Transpose(), delta), Multiply(l[0].I.Transpose(), delta), Multiply(Matrix{X}.Transpose(), delta)
  89. DWo1.Divide(10)
  90. DWi1.Divide(10)
  91. DB1.Divide(10)
  92. l[2].p.Wo.Add(DWo2)
  93. l[2].p.Wi.Add(DWi2)
  94. l[2].p.B.Add(DB2)
  95. l[1].p.Wo.Add(DWo1)
  96. l[1].p.Wi.Add(DWi1)
  97. l[1].p.B.Add(DB1)
  98. }
  99. return l
  100. }