RegMs If 1 năm trước cách đây
mục cha
commit
3e388ad611

+ 1 - 1
_config.yml

@@ -109,4 +109,4 @@ deploy:
   host: regmsif.cf
   user: root
   remotePath: /root/hexo
-  privateKey: /home/regmsif/.ssh/id_rsa
+  privateKey: /Users/regmsif/.ssh/id_rsa

+ 12 - 12
package.json

@@ -9,21 +9,21 @@
     "server": "hexo server"
   },
   "hexo": {
-    "version": "6.1.0"
+    "version": "7.2.0"
   },
   "dependencies": {
-    "hexo": "^6.0.0",
+    "hexo": "^7.2.0",
     "hexo-deployer-sftp": "^0.4.1",
-    "hexo-generator-archive": "^1.0.0",
-    "hexo-generator-category": "^1.0.0",
-    "hexo-generator-index": "^2.0.0",
-    "hexo-generator-tag": "^1.0.0",
+    "hexo-generator-archive": "^2.0.0",
+    "hexo-generator-category": "^2.0.0",
+    "hexo-generator-index": "^3.0.0",
+    "hexo-generator-tag": "^2.0.0",
     "hexo-renderer-ejs": "^2.0.0",
-    "hexo-renderer-marked": "^5.0.0",
-    "hexo-renderer-stylus": "^2.0.0",
+    "hexo-renderer-marked": "^6.3.0",
+    "hexo-renderer-stylus": "^3.0.1",
     "hexo-server": "^3.0.0",
-    "hexo-theme-fluid": "^1.8.14",
-    "hexo-theme-landscape": "^0.0.3",
-    "nunjucks": "^3.2.3"
+    "hexo-theme-fluid": "^1.9.7",
+    "hexo-theme-landscape": "^1.0.0",
+    "nunjucks": "^3.2.4"
   }
-}
+}

+ 2 - 2
source/_posts/coding/digital-image-processing-assignment-iii.md

@@ -37,7 +37,7 @@ void gen_color(BITMAP *bmImg, BITMAP *bmColor) {
 Gamma encoding of images is used to optimize the usage of bits when encoding an image, or bandwidth used to transport an image, by taking advantage of the non-linear manner in which humans perceive light and color. Gamma correction is a nonlinear operation used to encode and decode luminance values in video or still image systems. Gamma correction is, in the simplest cases, defined by the following power-law expression.
 
 $$
-L_d=L_w^{\frac{1}{\gamma}}
+L_d=L_w^{1 \over \gamma}
 $$
 
 ```c
@@ -65,7 +65,7 @@ void gamma_correct(BITMAP *bmImg, BITMAP *bmGamma, double gamma) {
 We use a logarithmic operator to adjust the pixel value,
 
 $$
-L_d=\frac{\log(L_w+1)}{\log(L_{max}+1)}
+L_d={\log(L_w+1) \over \log(L_{max}+1)}
 $$
 
 where $L_d$ refers to display luminance, $L_w$ refers to original luminance, and $L_{max}$ is the maximal luminance in the original image.

+ 1 - 1
source/_posts/coding/digital-image-processing-assignment-iv.md

@@ -122,7 +122,7 @@ where $a$ is usually set to $-0.5$. At this time, the equation can be expressed
 
 $$
 \begin{equation}
-    p(t)=\frac{1}{2}
+    p(t)={1 \over 2}
     \left[\begin{matrix}
         1 & t & t^2 & t^3
     \end{matrix}\right]

+ 9 - 9
source/_posts/oi/introduction-to-quadratic-residue.md

@@ -19,7 +19,7 @@ date: 2020-02-06 23:55:36
 - **定义 2(勒让德符号)**
 
 $$
-\left(\frac{n}{p}\right)=\begin{cases}1, & n是模p的二次剩余 \\\\ -1, & n是模p的二次非剩余 \\\\ 0, & p \mid n\end{cases}
+\left({n \over p}\right)=\begin{cases}1, & n是模p的二次剩余 \\\\ -1, & n是模p的二次非剩余 \\\\ 0, & p \mid n\end{cases}
 $$
 
 ## 定理
@@ -27,14 +27,14 @@ $$
 - **定理 1(欧拉判别准则)**
 
 $$
-\left(\frac{n}{p}\right) \equiv n^{\frac{p-1}{2}} \pmod p
+\left({n \over p}\right) \equiv n^{p-1 \over 2} \pmod p
 $$
 
 > **证明** 若$p \mid n$,则$n \equiv 0 \pmod p$,结论显然成立;
 >
-> 若$n$是模$p$的二次剩余,则存在$x$满足$x^2 \equiv n \pmod p$,于是$n^{\frac{p-1}{2}} \equiv x^{p-1} \pmod p$,由费马小定理,结论成立;
+> 若$n$是模$p$的二次剩余,则存在$x$满足$x^2 \equiv n \pmod p$,于是$n^{p-1 \over 2} \equiv x^{p-1} \pmod p$,由费马小定理,结论成立;
 >
-> 若$n$是模$p$的二次非剩余,则不存在$x$满足$x^2 \equiv n \pmod p$。由逆元相关知识,对于任意$1 \le i \le p-1$,存在唯一的$1 \le j \le p-1$,使得$i \neq j$且$ij \equiv n \pmod p$。于是$1$到$p-1$这些数可以两两配对,每一对的乘积都与$n$同余,所以$(p-1)! \equiv n^{\frac{p-1}{2}} \pmod p$,由威尔逊定理,$(p-1)! \equiv -1 \pmod p$,结论成立。
+> 若$n$是模$p$的二次非剩余,则不存在$x$满足$x^2 \equiv n \pmod p$。由逆元相关知识,对于任意$1 \le i \le p-1$,存在唯一的$1 \le j \le p-1$,使得$i \neq j$且$ij \equiv n \pmod p$。于是$1$到$p-1$这些数可以两两配对,每一对的乘积都与$n$同余,所以$(p-1)! \equiv n^{p-1 \over 2} \pmod p$,由威尔逊定理,$(p-1)! \equiv -1 \pmod p$,结论成立。
 
 令$1 \le x, y \le p-1$。
 
@@ -48,9 +48,9 @@ $$
 >
 > $\Leftarrow$: $x^2 \equiv y^2 \pmod p \Rightarrow x^2-y^2 \equiv (x-y)(x+y) \equiv 0 \pmod p$,显然$x-y \nmid p$,于是有$x+y \mid p \Rightarrow x+y \equiv 0 \pmod p$。
 
-- **定理 3** 在$1$到$p-1$中,模$p$的二次剩余和二次非剩余的个数均为$\frac{p-1}{2}$。
+- **定理 3** 在$1$到$p-1$中,模$p$的二次剩余和二次非剩余的个数均为${p-1 \over 2}$。
 
-> **证明** 由**定理 2**,$1$到$p-1$中有且仅有$\frac{p-1}{2}$个不同的二次剩余,其余$\frac{p-1}{2}$个即为二次非剩余。并且对于每一个二次剩余$n$,都存在两个不同的$x$满足$x^2 \equiv n \pmod p$。
+> **证明** 由**定理 2**,$1$到$p-1$中有且仅有${p-1 \over 2}$个不同的二次剩余,其余${p-1 \over 2}$个即为二次非剩余。并且对于每一个二次剩余$n$,都存在两个不同的$x$满足$x^2 \equiv n \pmod p$。
 
 ## 算法
 
@@ -58,12 +58,12 @@ $$
 
 1. 用**欧拉判别准则**判断$n$是否为模$p$的二次剩余,如果不是则返回$-1$表示无解,如果是$0$则返回$0$;
 2. 从$1$到$p-1$中随机选一个整数$a$,使得$a^2-n$为模$p$的二次非剩余(根据**定理 3**,随机的次数不会太多);
-3. 令$\omega \equiv a^2-n \pmod p$,取$x \equiv (a+\sqrt{\omega})^{\frac{p-1}{2}} \pmod p$,返回$x$(这里$\sqrt{\omega}$可以理解成虚数)。
+3. 令$\omega \equiv a^2-n \pmod p$,取$x \equiv (a+\sqrt{\omega})^{p-1 \over 2} \pmod p$,返回$x$(这里$\sqrt{\omega}$可以理解成虚数)。
 
 - **引理 1**
 
 $$
-\omega^{\frac{p}{2}} \equiv -\omega^{\frac{1}{2}} \pmod p
+\omega^{p \over 2} \equiv -\omega^{1 \over 2} \pmod p
 $$
 
 > **证明** 由**欧拉判别准则**,显然成立。
@@ -77,7 +77,7 @@ $$
 > **证明** $(a+b)^p \equiv \sum_{i=0}^p {p \choose i}a^ib^{p-i}$,由于$p$是奇质数,所以当且仅当$i=0$或$i=p$时${p \choose i}$没有因子$p$,于是成立。
 
 > **算法证明**  
-> $$\begin{align} x^2 & \equiv (a+\sqrt{\omega})^{p-1} \\\\ & \equiv (a+\sqrt{\omega})^p(a+\sqrt{\omega}) \\\\ & \equiv (a^p+\omega^{\frac{p}{2}})(a+\sqrt{\omega}) \\\\ & \equiv (a-\sqrt{\omega})(a+\sqrt{\omega}) \\\\ & \equiv a^2-\omega \equiv n \pmod p \end{align}$$
+> $$\begin{align} x^2 & \equiv (a+\sqrt{\omega})^{p-1} \\\\ & \equiv (a+\sqrt{\omega})^p(a+\sqrt{\omega}) \\\\ & \equiv (a^p+\omega^{p \over 2})(a+\sqrt{\omega}) \\\\ & \equiv (a-\sqrt{\omega})(a+\sqrt{\omega}) \\\\ & \equiv a^2-\omega \equiv n \pmod p \end{align}$$
 >
 > 由于$x^2 \equiv n \pmod p$有且仅有两根,且都不含$\sqrt{\omega}$项,而由算法给出的$x$是方程的一个根,所以它不含$\sqrt{\omega}$项。
 

+ 1 - 1
source/_posts/oi/pandas-birthday-present.md

@@ -23,7 +23,7 @@ On Panda's Birthday party, he received a strange present from Jason. The present
 
 为了方便起见,我们假设$0^0=1$。首先可以知道的结论:
 
-1. 对于一个骰子,它有$t$个面被染成红色的概率$P(x=t)={{6 \choose t} \over 2^6}={{6 \choose t} \over 64}$;
+1. 对于一个骰子,它有$t$个面被染成红色的概率$P(x=t)={ {6 \choose t} \over 2^6}={ {6 \choose t} \over 64}$;
 2. 扔一个骰子$n$次,其中有$k$次朝上的面是红色的概率为$\sum_{i=0}^6 P(x=i) \cdot {i^k(6-i)^{n-k} \over 6^n}$。
 
 考虑不管是一次操作中的多个骰子还是多次操作,它们其实是独立重复实验,与顺序无关。因此,只要$p+q$是确定的,那么第三次的期望也是确定的。令$1$表示红色面朝上、$0$表示蓝色面朝上,那么我们所要求的就是$P(??1|??)$,其中$??$表示前两次骰子朝上的面分别是什么。

+ 2 - 2
source/_posts/oi/tsr-and-variance.md

@@ -15,7 +15,7 @@ Tsr is a cute boy with handsome moustache.
 
 You are given a sequence with length $n$. Tsr wants you to calculate the sum of variance of each successive subsequence. Note: The variance in this problem should't be divided by length.
 
-Recall $\overline{a}_{l, r}=\frac{1}{r-l+1} \sum_{i=l}^r a_i$. Then you are supposed to calculate $\sum_{i=1}^n \sum_{j=i}^n \sum_{k=i}^j (a_k-\overline{a}_{i, j})^2$.
+Recall $\overline{a}_{l, r}={1 \over r-l+1} \sum_{i=l}^r a_i$. Then you are supposed to calculate $\sum_{i=1}^n \sum_{j=i}^n \sum_{k=i}^j (a_k-\overline{a}_{i, j})^2$.
 
 ## 题意概述
 
@@ -29,7 +29,7 @@ $$\begin{align} \sum_{i=1}^n \sum_{j=i}^n \sum_{k=i}^j (a_k-\overline{a}_{i, j})
 
 前一项可以在$O(n)$时间内求出,只需考虑如何求后一项。令$s_i=\sum_{j=1}^i a_j$。
 
-$$\begin{align} \sum_{i=1}^n \sum_{j=i}^n (j-i+1) \overline{a}_{i, j}^2  &= \sum_{j=1}^n \sum_{i=1}^j \frac{(s_j-s_{i-1})^2}{j-i+1} \\\\ &= \sum_{j=1}^n \sum_{i=1}^j \frac{s_j^2-2s_js_{i-1}+s_{i-1}^2}{j-i+1} \\\\ &= \sum_{j=1}^n s_j^2 \sum_{i=1}^j \frac{1}{i}-2\sum_{j=1}^n s_j \sum_{i=1}^j \frac{s_{i-1}}{j-(i-1)}+\sum_{j=1}^n \sum_{i=1}^j \frac{s_{i-1}^2}{j-(i-1)} \end{align}$$
+$$\begin{align} \sum_{i=1}^n \sum_{j=i}^n (j-i+1) \overline{a}_{i, j}^2  &= \sum_{j=1}^n \sum_{i=1}^j {(s_j-s_{i-1})^2 \over j-i+1} \\\\ &= \sum_{j=1}^n \sum_{i=1}^j {s_j^2-2s_js_{i-1}+s_{i-1}^2 \over j-i+1} \\\\ &= \sum_{j=1}^n s_j^2 \sum_{i=1}^j {1 \over i}-2\sum_{j=1}^n s_j \sum_{i=1}^j {s_{i-1} \over j-(i-1)}+\sum_{j=1}^n \sum_{i=1}^j {s_{i-1}^2 \over j-(i-1)} \end{align}$$
 
 第一项也可以在$O(n)$时间内求出,而后面两项都是卷积的形式,可以用 FFT 在$O(n\log n)$时间内求出。
 

Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 290 - 365
yarn.lock


Một số tệp đã không được hiển thị bởi vì quá nhiều tập tin thay đổi trong này khác