--- title: Notes on Physics tags: - Physics id: "3243" categories: - - Life - Study date: 2018-06-30 13:15:27 --- ## One-dimensional motion $$ \begin{align} v_f&=v_i+a \Delta t \\\\ \Delta x&=v_i \Delta t+{a \Delta t^2 \over 2} \\\\ \Delta x&={v_i+v_f \over 2} \Delta t \\\\ v_f^2&=v_i^2+2a \Delta x \end{align} $$ ## Forces and Newton's laws of motion $$ \begin{align} F=ma \end{align} $$ ## Centripetal force and gravitation $$ \begin{align} a&={v^2 \over r}=\omega^2r \\\\ F&=G{m_1m_2 \over r^2} \end{align} $$ ## Work and energy $$ \begin{align} K&={mv^2 \over 2} \\\\ U_g&=F_gh=mgh \\\\ P&={W \over t}={Fx \over t}=Fv=mav \end{align} $$ ## Electric charge, field, and potential $$ \begin{align} F&=k{Q_1Q_2 \over r^2} \\\\ E&=k{Q \over r^2} \\\\ E&=2 \pi k \sigma \\\\ U_e&=k{Q_1Q_2 \over r} \\\\ V&=k{Q \over r} \end{align} $$ ## Circuits $$ \begin{align} R&={V \over I} \\\\ C&={Q \over V} \\\\ C&={A \over 4 \pi kd} \\\\ P&={U \over t}={U \over Q} \cdot {Q \over t}=VI=I^2R \\\\ W&=Pt=VIt=I^2Rt \end{align} $$ ## Magnetic forces, magnetic fields, and Faraday's law $$ \begin{align} F&=QvB={Q \over t}(vt)B=ILB={B^2L^2v \over R} \\\\ B&={\mu_0I \over 2 \pi r} \\\\ \Phi&=BA \\\\ E&=N{\Delta \Phi \over \Delta t}=N{B\Delta A \over \Delta t}=NBLv \\\\ V_s&=V_p{N_s \over N_p} \end{align} $$ ## Momentum $$ \begin{align} I=mv=QLB={B^2L^2x \over R} \end{align} $$