--- title: Brackets tags: - Dynamic Programming id: "302" categories: - - OI - Common Skill date: 2017-06-14 20:30:36 --- ## 题目描述 We give the following inductive definition of a "regular brackets" sequence: - the empty sequence is a regular brackets sequence, - if `s` is a regular brackets sequence, then `(s)` and `[s]` are regular brackets sequences, - if `a` and `b` are regular brackets sequences, then `ab` is a regular brackets sequence, - no other sequence is a regular brackets sequence. For instance, all of the following character sequences are regular brackets sequences: `(), [], (()), ()[], ()[()]`, while the following character sequences are not: `(, ], )(, ([)], ([(]`. Given a brackets sequence of characters $a_1a_2 \ldots a_n$, your goal is to find the length of the longest regular brackets sequence that is a subsequence of $s$. That is, you wish to find the largest $m$ such that for indices $i_1, i_2, \ldots, i_m$ where $1 \le i_1 \lt i_2 \lt \cdots \lt i_m \le n$, $a_{i_1}a_{i_2} \ldots a_{i_m}$ is a regular brackets sequence. Given the initial sequence `([([]])]`, the longest regular brackets subsequence is `[([])]`. ## 题意概述 给定一个只由`()[]`这四种字符组成的长度为$n$的字符串,求其最长的满足匹配的子序列的长度。 数据范围:$1 \le n \le 100$。 ## 算法分析 用$f_{i, j}$表示$a_ia_{i+1} \ldots a_j$中满足条件的最大长度。当$j-i \gt 0$时,有如下转移方程 $$ f_{i, j}= \begin{cases} \max(f_{i + 1, j - 1} + 2, f_{i, k} + f_{k + 1, j} \mid i \le k \lt j), & a_i \text{ matches } a_j \\\\ \max(f_{i, k} + f_{k + 1, j} \mid i \le k \lt j), & \text{otherwise} \end{cases} $$ 考虑边界条件。易知$j-i \le 0$时,$f_{i, j}=0$。 对于$f_{i, j}$,满足$j-i=t$的$f_{i, j}$的值取决于满足$j-i \lt t$的$f_{i, j}$的值。因此可以先从小到大枚举$j-i$,再从小到大枚举$i$,然后从$i$到$j$枚举$k$,利用转移方程解决此题。