--- title: GCD Extreme (Hard) tags: - Dirichlet Convolution - Euler's Sieve - GCD-LCM id: "1934" categories: - - OI - Number Theory date: 2018-01-23 07:35:32 --- ## 题目描述 Let $G(n)=\sum_{i=1}^n \sum_{j=i+1}^n (i, j)$. For example, $G(1)=0, \ G(2)=(1, 2)=1, \ G(3)=(1, 2)+(1, 3)+(2, 3)=3$. Given $N$, find $G(N)$ **modulo** $2^{64}$. ## 题意概述 令$G(n)=\sum_{i=1}^n \sum_{j=i+1}^n (i, j)$。给定$N$,求$G(N) \bmod 2^{64}$。 数据范围:$1 \le N \le 235711131719$。 ## 算法分析 推式子 $$ \begin{align} G(n)&=\sum_{i=1}^n \sum_{j=i+1}^n (i, j)=\sum_{i=2}^n \sum_{j=1}^{i-1} (i, j) \\\\ &=\sum_{d=1}^n d \sum_{i=2}^{\lfloor n/d \rfloor} \sum_{j=1}^{i-1} [(i, j)=1] \\\\ &=\sum_{d=1}^n d \sum_{i=2}^{\lfloor n/d \rfloor} \varphi(i) \end{align} $$ 令$S(n)=\sum_{i=1}^n \varphi(i)$。由于$\varphi \ast 1=I$,因此 $$ \begin{align} \sum_{i=1}^n (\varphi \ast 1)(i)&={n(n+1) \over 2} \\\\ &=\sum_{i=1}^n \sum_{j \mid i} \varphi(j) \\\\ &=\sum_{ij \le n} \varphi(j) \\\\ &=\sum_{i=1}^n \sum_{j=1}^{\lfloor n/i \rfloor} \varphi(j) \\\\ &=\sum_{i=1}^n S\left(\left\lfloor {n \over i} \right\rfloor\right) \end{align} $$ 那么 $$ \begin{align} S(n)&={n(n+1) \over 2}-\sum_{i=2}^n S\left(\left\lfloor {n \over i} \right\rfloor\right) \\\\ G(n)&=\sum_{d=1}^n d \cdot \left(S\left(\left\lfloor {n \over d} \right\rfloor\right)-1\right) \end{align} $$ 接下来就可以利用分块的技巧计算。 ## 代码 ```cpp #include #include #define int long long static const int N = 10000000; int prime[N], phi[N]; bool vis[N]; void init() { int top = 0; phi[1] = 1; for (int i = 2; i < N; ++ i) { if (! vis[i]) prime[top ++] = i, phi[i] = i - 1; for (int j = 0; j < top; ++ j) { int k = i * prime[j]; if (k >= N) break; vis[k] = true; if (i % prime[j]) phi[k] = phi[i] * (prime[j] - 1); else { phi[k] = phi[i] * prime[j]; break; } } } for (int i = 2; i < N; ++ i) phi[i] += phi[i - 1]; } int get_sum(int n) { return n & 1 ? ((n + 1) >> 1) * n : (n >> 1) * (n + 1); } std :: map mp; int get_phi(int n) { if (n < N) return phi[n]; if (mp.count(n)) return mp[n]; int ret = get_sum(n); for (int i = 2, j; i <= n; i = j + 1) j = n / (n / i), ret -= (j - i + 1) * get_phi(n / i); return mp[n] = ret; } int calc(int n) { int ret = 0; for (int i = 1, j; i <= n; i = j + 1) j = n / (n / i), ret += (get_sum(j) - get_sum(i - 1)) * (get_phi(n / i) - 1); return ret; } signed main() { int T; scanf("%lld", &T), init(); while (T --) { int n; scanf("%lld", &n), printf("%llu\n", calc(n)); } return 0; } ```