--- title: Notes on Graph Theory tags: - Kirchhoff's Theorem - Note id: "1055" categories: - [OI, Graph Theory] - [OI, Number Theory] date: 2017-07-05 15:10:37 --- ### Matrix-Tree 矩阵的秩、迹、特征值、特征向量 对角化 $G \rightarrow M, M^k, k \in N^*$. $G=k_n$. --- ### Hoffman-Singleton $G, \Delta-free, C_4-free, r-regular$. $(1) |v| \ge r^2+1$. $(2) r, |v|=r^2+1$. $G \rightarrow A, (1, 1, ..., 1)A=r(1, 1, ..., 1)$. $A^2=\begin{bmatrix} r & 0/1 & 0/1 & ... & 0/1 \\\\ 0/1 & r & 0/1 & ... & 0/1 \\\\ 0/1 & 0/1 & r & ... & 0/1 \\\\ ... & ... & ... & ... & ... \\\\ 0/1 & 0/1 & 0/1 & 0/1 & r\end{bmatrix}$. $A^2+A=\begin{bmatrix} r & 1 & 1 & ... & 1 \\\\ 1 & r & 1 & ... & 1 \\\\ 1 & 1 & r & ... & 1 \\\\ ... & ... & ... & ... & ... \\\\ 1 & 1 & 1 & 1 & r\end{bmatrix}$. $I=\begin{bmatrix} 1 & 0 & ... & 0 \\\\ 0 & 1 & ... & 0 \\\\ ... & ... & ... & ... \\\\ 0 & 0 & 0 & 1\end{bmatrix}$. $J=\begin{bmatrix} 1 & 1 & ... & 1 \\\\ 1 & 1 & ... & 1 \\\\ ... & ... & ... & ... \\\\ 1 & 1 & 1 & 1\end{bmatrix}$. $A\alpha=\lambda\alpha, \lambda$是$A$特征值,$\alpha$是$A$特征向量。 $A\alpha=\lambda\alpha=\lambda I\alpha$. $(A-\lambda I)\alpha=0$. $f(x)=|A-\lambda I|$. $I$特征值为$1$. $A^2+A=(r-1)I+J$. 特征值为$r-1+n, r-1, r-1, ..., r-1 (n-1)$个。 $r^2+r, r-1, r-1, ..., r-1 (n-1)$个。 $\lambda^2+\lambda=r^2+r, r-1$. $\lambda=r || {-1 \pm \sqrt{4r-3} \over 2}$. $tr(A)=0=r+k_1{-1+\sqrt{4r-3} \over 2}+k_2{-1-\sqrt{4r-3} \over 2}, k_1+k_2=n-1$. $r=2, 3, 7, 57$. --- ### Cauchy Binet $\begin{bmatrix} x_1 & x_2 & ... & x_n \\\\ y_1 & y_2 & ... & y_n \end{bmatrix}\begin{bmatrix} z_1 & w_1 \\\\ z_2 & w_2 \\\\ ... & ... \\\\ z_n & w_n \end{bmatrix}=\begin{bmatrix} \sum x_iz_i & \sum x_iw_i \\\\ \sum y_iz_i & \sum y_iw_i\end{bmatrix}=A$. $|A|=\sum_{i, j} \begin{vmatrix}\begin{bmatrix} x_i & x_j \\\\ y_i & y_j \end{bmatrix}\begin{bmatrix} z_i & w_i \\\\ z_j & w_j \end{bmatrix}\end{vmatrix}$. $m \times n A, n \times m B$. $|AB|=\sum_{i_1, i_2, ..., i_m} \begin{vmatrix}A\begin{bmatrix} 1 & 2 & ... & m \\\\ i_1 & i_2 & ... & i_m \end{bmatrix} B\begin{bmatrix} i_1 & i_2 & ... & i_m \\\\ 1 & 2 & ... & m \end{bmatrix}\end{vmatrix}$. --- ### Laplace $a_{i, i}=deg(v_i), a_{i, j}=v_i-v_j$间连边数的相反数。 $L(G) \rightarrow L_v(G), G=det(L_v(G))$. $\begin{matrix} & & & e(G) & & & \\\\ & & e_1 & e_2 & e_3 & ... & e_m \\\\ & v_1 & 1 & 1 & & & \\\\ & v_2 & 1 & & 1 & & 1 \\\\ v(G) & v_3 & & 1 & & & 1 \\\\ & ... & & & & & \\\\ & v_n & & & 1 & & \end{matrix}$. 随意为$G$定向$\overline{G}=Q \rightarrow Q_v$。 $QQ'=L(G)$. $det(L_v(G))=det(Q_vQ_v')$. Cayley Formula 完全图$K_n$的生成树个数为$n^{n-2}$。 Proofs from THE BOOK.