--- title: Tree tags: - Centroid Decomposition - Self-Balancing Binary Search Tree - Tree id: "896" categories: - [OI, Common Skill] - [OI, Data Structure] - [OI, Graph Theory] date: 2017-07-01 10:45:08 --- ## 题目描述 Give a tree with $n$ vertices, each edge has a length (positive integer less than $1001$). Define $dist(u, v)= \text{The min distance between node} \ u \ \text{and} \ v$. Give an integer $k$, for every pair $(u, v)$ of vertices is called valid if and only if $dist(u, v)$ not exceed $k$. Write a program that will count how many pairs which are valid for a given tree. ## 题意概述 给定一棵有$n$个节点的树以及每条边的权值,问有多少个点对之间的距离不大于$k$。 数据范围:$2 \le n \le 10000$。 ## 算法分析 考虑对于一个节点$x$以及它的子树,其中距离不大于$k$的点对要么在$x$的同一棵子树中,要么在$x$的不同子树中。后者可以递归解决,下面来解决前者。 可以统计出子树中每个节点到$x$的距离$dist_{u, x}$。显然有 $$ dist_{u, v} \le k \text{且路径经过} x \Leftrightarrow dist_{u, x} + dist_{x, v} \le k \text{且} u \text{和} v \text{在不同子树中} $$ 枚举$x$的子树,将前$i$棵子树中所有节点到$x$的距离用 Treap 维护,在处理第$(i+1)$棵子树的节点$t$时把答案加上 Treap 中小于等于$k-dist_{t, x}$的数的个数,即可得到答案。 ## 代码 ```cpp #include #include #include #include using namespace std; struct edge { int v, w, nxt; } e[20001]; struct treap { int tot, root; struct node_type { int val, cnt, size, rank, child[2]; } a[10001]; void init() { tot = root = 0; } void update(int t) { a[t].size = a[a[t].child[0]].size + a[a[t].child[1]].size + a[t].cnt; } void turn(int &t, int dire) { int p = a[t].child[!dire]; a[t].child[!dire] = a[p].child[dire], a[p].child[dire] = t; update(t), update(p), t = p; } void insert(int &t, int val) { if (!t) { t = ++tot, a[t].rank = rand(), a[t].cnt = a[t].size = 1, a[t].val = val; a[t].child[0] = a[t].child[1] = 0; return; } ++a[t].size; if (val == a[t].val) ++a[t].cnt; else if (val < a[t].val) { insert(a[t].child[0], val); if (a[a[t].child[0]].rank < a[t].rank) turn(t, 1); } else { insert(a[t].child[1], val); if (a[a[t].child[1]].rank < a[t].rank) turn(t, 0); } } int query(int t, int val) { if (!t) return 0; if (val == a[t].val) return a[a[t].child[0]].size; else if (val < a[t].val) return query(a[t].child[0], val); else return a[a[t].child[0]].size + a[t].cnt + query(a[t].child[1], val); } } tree; long long n, k, nume, root, tot, ans, h[10001], size[10001], f[10001], val[10001]; bool vis[10001]; void add_edge(int u, int v, int w) { e[++nume].v = v, e[nume].w = w, e[nume].nxt = h[u], h[u] = nume; e[++nume].v = u, e[nume].w = w, e[nume].nxt = h[v], h[v] = nume; } void get_root(int t, int fa) { size[t] = 1, f[t] = 0; for (int i = h[t]; i; i = e[i].nxt) { if (!vis[e[i].v] && e[i].v != fa) { get_root(e[i].v, t); size[t] += size[e[i].v]; f[t] = max(f[t], size[e[i].v]); } } f[t] = max(f[t], tot - size[t]); if (f[t] < f[root]) root = t; } void get_dist(int t, int fa, int flag) { if (!flag) tree.insert(tree.root, val[t]); else ans += tree.query(tree.root, k - val[t] + 1); for (int i = h[t]; i; i = e[i].nxt) { if (!vis[e[i].v] && e[i].v != fa) { val[e[i].v] = val[t] + e[i].w; get_dist(e[i].v, t, flag); } } } void solve(int t) { vis[t] = true; tree.init(), tree.insert(tree.root, 0); for (int i = h[t]; i; i = e[i].nxt) { if (!vis[e[i].v]) { val[e[i].v] = e[i].w; get_dist(e[i].v, t, 1); get_dist(e[i].v, t, 0); } } for (int i = h[t]; i; i = e[i].nxt) { if (!vis[e[i].v]) { root = 0, tot = size[e[i].v]; get_root(e[i].v, t); solve(root); } } } int main() { while (scanf("%lld%lld", &n, &k)) { if (!n) break; memset(vis, 0, sizeof(vis)); memset(h, 0, sizeof(h)); ans = nume = 0; for (int i = 1; i < n; ++i) { int u, v, w; scanf("%d%d%d", &u, &v, &w); add_edge(u ,v, w); } tot = f[0] = n, root = 0; get_root(1, 0); solve(root); printf("%lld\n", ans); } return 0; } ```