title: Tsr and Variance tags:
Tsr is a cute boy with handsome moustache.
You are given a sequence with length $n$. Tsr wants you to calculate the sum of variance of each successive subsequence. Note: The variance in this problem should't be divided by length.
Recall $\overline a{l, r}={1 \over r-l+1} \sum{i=l}^r ai$. Then you are supposed to calculate $\sum{i=1}^n \sum{j=i}^n \sum{k=i}^j (ak-\overline a{i, j})^2$.
给定一个长度为$n$的序列,求$\sum{i=1}^n \sum{j=i}^n \sum_{k=i}^j (ak-\overline a{i, j})^2$。有$T$组数据。
数据范围:$1 \le T \le 20, \ 1 \le n \le 10000, \ 1 \le a_i \le 10$。
$$\begin{align} \sum{i=1}^n \sum{j=i}^n \sum_{k=i}^j (ak-\overline a{i, j})^2 &= \sum{i=1}^n \sum{j=i}^n \sum_{k=i}^j (a_k^2-2ak \overline a{i, j}+\overline a{i, j}^2) \\ &= \sum{k=1}^n \sum{i=1}^k \sum{j=k}^n ak^2-2\sum{i=1}^n \sum{j=i}^n \overline a{i, j} \sum_{k=i}^j ak+ \sum{i=1}^n \sum{j=i}^n (j-i+1) \overline a{i, j}^2 \\ &= \sum_{k=1}^n k(n-k+1)ak^2-\sum{i=1}^n \sum{j=i}^n (j-i+1) \overline a{i, j}^2 \end{align}$$
前一项可以在$O(n)$时间内求出,只需考虑如何求后一项。令$si=\sum{j=1}^i a_j$。
$$\begin{align} \sum{i=1}^n \sum{j=i}^n (j-i+1) \overline a{i, j}^2 &= \sum{j=1}^n \sum_{i=1}^j {(sj-s{i-1})^2 \over j-i+1} \\ &= \sum{j=1}^n \sum{i=1}^j {s_j^2-2sjs{i-1}+s{i-1}^2 \over j-i+1} \\ &= \sum{j=1}^n sj^2 \sum{i=1}^j {1 \over i}-2\sum_{j=1}^n sj \sum{i=1}^j {s{i-1} \over j-(i-1)}+\sum{j=1}^n \sum{i=1}^j {s{i-1}^2 \over j-(i-1)} \end{align}$$
第一项也可以在$O(n)$时间内求出,而后面两项都是卷积的形式,可以用 FFT 在$O(n\log n)$时间内求出。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
int const N = 10005, T = 400005;
double const PI = acos(-1);
int a[N], rev[T];
struct Point {
double x, y;
Point(double _x = 0, double _y = 0) : x(_x), y(_y) {}
friend Point const operator + (Point const &a, Point const &b) {
return Point(a.x + b.x, a.y + b.y);
}
friend Point const operator - (Point const &a, Point const &b) {
return Point(a.x - b.x, a.y - b.y);
}
friend Point const operator * (Point const &a, Point const &b) {
return Point(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}
friend Point const operator / (Point const &a, double const &n) {
return Point(a.x / n, a.y / n);
}
} wn[T], A[T], B[T], C[T];
int init(int n) {
int m = n, l = 0;
for (n = 1; n <= m; n <<= 1, ++l) ;
for (int i = 1; i < n; ++i) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << l - 1;
}
for (int i = 0; i < n >> 1; ++i) {
wn[i] = Point(cos(2 * PI / n * i), sin(2 * PI / n * i));
}
return n;
}
void fft(Point *a, int n, int inv = 0) {
for (int i = 0; i < n; ++i) {
if (i < rev[i]) {
std::swap(a[i], a[rev[i]]);
}
}
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; j += i << 1) {
for (int k = 0; k < i; ++k) {
Point x = a[j + k], y = wn[n / (i << 1) * k] * a[j + k + i];
a[j + k] = x + y;
a[j + k + i] = x - y;
}
}
}
if (inv) {
std::reverse(a + 1, a + n);
for (int i = 0; i < n; ++i) {
a[i] = a[i] / n;
}
}
}
int main() {
int T;
scanf("%d", &T);
for (; T--;) {
int n;
scanf("%d", &n);
double ans = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
ans += 1. * a[i] * a[i] * i * (n - i + 1);
a[i] += a[i - 1];
}
double sum = 0;
for (int i = 1; i <= n; ++i) {
sum += 1. / i;
ans -= sum * a[i] * a[i];
}
int len = init(n << 1);
for (int i = 0; i < n; ++i) {
A[i] = Point(a[i]);
B[i] = Point(1. * a[i] * a[i]);
C[i] = Point(1. / (i + 1));
}
for (int i = n; i < len; ++i) {
A[i] = B[i] = C[i] = Point(0);
}
fft(A, len);
fft(B, len);
fft(C, len);
for (int i = 0; i < len; ++i) {
A[i] = A[i] * C[i];
B[i] = B[i] * C[i];
}
fft(A, len, 1);
fft(B, len, 1);
for (int i = 0; i < n; ++i) {
ans += 2 * a[i + 1] * A[i].x - B[i].x;
}
printf("%.10f\n", ans);
}
return 0;
}