title: GCD Extreme (Hard) tags:
Let $G(n)=\sum{i=1}^n \sum{j=i+1}^n (i, j)$. For example, $G(1)=0, \ G(2)=(1, 2)=1, \ G(3)=(1, 2)+(1, 3)+(2, 3)=3$. Given $N$, find $G(N)$ modulo $2^{64}$.
令$G(n)=\sum{i=1}^n \sum{j=i+1}^n (i, j)$。给定$N$,求$G(N) \bmod 2^{64}$。
数据范围:$1 \le N \le 235711131719$。
推式子
$$ \begin{align} G(n)&=\sum{i=1}^n \sum{j=i+1}^n (i, j)=\sum{i=2}^n \sum{j=1}^{i-1} (i, j) \\ &=\sum{d=1}^n d \sum{i=2}^{\lfloor n/d \rfloor} \sum{j=1}^{i-1} [(i, j)=1] \\ &=\sum{d=1}^n d \sum_{i=2}^{\lfloor n/d \rfloor} \varphi(i) \end{align} $$
令$S(n)=\sum_{i=1}^n \varphi(i)$。由于$\varphi \ast 1=I$,因此
$$ \begin{align} \sum{i=1}^n (\varphi \ast 1)(i)&={n(n+1) \over 2} \\ &=\sum{i=1}^n \sum{j \mid i} \varphi(j) \\ &=\sum{ij \le n} \varphi(j) \\ &=\sum{i=1}^n \sum{j=1}^{\lfloor n/i \rfloor} \varphi(j) \\ &=\sum_{i=1}^n S\left(\left\lfloor {n \over i} \right\rfloor\right) \end{align} $$
那么
$$ \begin{align} S(n)&={n(n+1) \over 2}-\sum{i=2}^n S\left(\left\lfloor {n \over i} \right\rfloor\right) \\ G(n)&=\sum{d=1}^n d \cdot \left(S\left(\left\lfloor {n \over d} \right\rfloor\right)-1\right) \end{align} $$
接下来就可以利用分块的技巧计算。
#include <map>
#include <cstdio>
#define int long long
static const int N = 10000000;
int prime[N], phi[N];
bool vis[N];
void init() {
int top = 0; phi[1] = 1;
for (int i = 2; i < N; ++ i) {
if (! vis[i]) prime[top ++] = i, phi[i] = i - 1;
for (int j = 0; j < top; ++ j) {
int k = i * prime[j]; if (k >= N) break;
vis[k] = true;
if (i % prime[j]) phi[k] = phi[i] * (prime[j] - 1); else { phi[k] = phi[i] * prime[j]; break; }
}
}
for (int i = 2; i < N; ++ i) phi[i] += phi[i - 1];
}
int get_sum(int n) {
return n & 1 ? ((n + 1) >> 1) * n : (n >> 1) * (n + 1);
}
std :: map <int, int> mp;
int get_phi(int n) {
if (n < N) return phi[n];
if (mp.count(n)) return mp[n];
int ret = get_sum(n);
for (int i = 2, j; i <= n; i = j + 1)
j = n / (n / i), ret -= (j - i + 1) * get_phi(n / i);
return mp[n] = ret;
}
int calc(int n) {
int ret = 0;
for (int i = 1, j; i <= n; i = j + 1)
j = n / (n / i), ret += (get_sum(j) - get_sum(i - 1)) * (get_phi(n / i) - 1);
return ret;
}
signed main() {
int T; scanf("%lld", &T), init();
while (T --) {
int n; scanf("%lld", &n), printf("%llu\n", calc(n));
}
return 0;
}